Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 30(3): 839-853, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639541

RESUMO

Taf4 (TATA-box binding protein-associated factor 4) is a subunit of the general transcription factor TFIID, a component of the RNA polymerase II pre-initiation complex that interacts with tissue-specific transcription factors to regulate gene expression. Properly regulated gene expression is particularly important in the intestinal epithelium that is constantly renewed from stem cells. Tissue-specific inactivation of Taf4 in murine intestinal epithelium during embryogenesis compromised gut morphogenesis and the emergence of adult-type stem cells. In adults, Taf4 loss impacted the stem cell compartment and associated Paneth cells in the stem cell niche, epithelial turnover and differentiation of mature cells, thus exacerbating the response to inflammatory challenge. Taf4 inactivation ex vivo in enteroids prevented budding formation and maintenance and caused broad chromatin remodeling and a strong reduction in the numbers of stem and progenitor cells with a concomitant increase in an undifferentiated cell population that displayed high activity of the Ezh2 and Suz12 components of Polycomb Repressive Complex 2 (PRC2). Treatment of Taf4-mutant enteroids with a specific Ezh2 inhibitor restored buddings, cell proliferation and the stem/progenitor compartment. Taf4 loss also led to increased PRC2 activity in cells of adult crypts associated with modification of the immune/inflammatory microenvironment that potentiated Apc-driven tumorigenesis. Our results reveal a novel function of Taf4 in antagonizing PRC2-mediated repression of the stem cell gene expression program to assure normal development, homeostasis, and immune-microenvironment of the intestinal epithelium.


Assuntos
Proteínas de Drosophila , Células-Tronco , Camundongos , Animais , Diferenciação Celular/genética , Células-Tronco/metabolismo , Fator de Transcrição TFIID/genética , Mucosa Intestinal/metabolismo , Proteínas de Drosophila/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Epigênese Genética
2.
Cell Death Dis ; 12(8): 790, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385420

RESUMO

Regulation of gene expression involves a complex and dynamic dialogue between transcription factors, chromatin remodelling and modification complexes and the basal transcription machinery. To address the function of the Taf4 subunit of general transcription factor TFIID in the regulation of insulin signalling, it was inactivated in adult murine pancreatic beta cells. Taf4 inactivation impacted the expression of critical genes involved in beta-cell function leading to increased glycaemia, lowered plasma insulin levels and defective glucose-stimulated insulin secretion. One week after Taf4-loss, single-cell RNA-seq revealed cells with mixed beta cell, alpha and/or delta cell identities as well as a beta cell population trans-differentiating into alpha-like cells. Computational analysis of single-cell RNA-seq defines how known critical beta cell and alpha cell determinants may act in combination with additional transcription factors and the NuRF chromatin remodelling complex to promote beta cell trans-differentiation.


Assuntos
Transdiferenciação Celular/genética , Perfilação da Expressão Gênica , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Subunidades Proteicas/metabolismo , Análise de Célula Única , Fator de Transcrição TFIID/metabolismo , Envelhecimento/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Mutação/genética , Fator de Transcrição TFIID/deficiência , Fatores de Transcrição/metabolismo
3.
Cell Death Differ ; 28(12): 3344-3356, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34158631

RESUMO

During autophagy, the coordinated actions of autophagosomes and lysosomes result in the controlled removal of damaged intracellular organelles and superfluous substrates. The evolutionary conservation of this process and its requirement for maintaining cellular homeostasis emphasizes the need to better dissect the pathways governing its molecular regulation. In our previously performed high-content screen, we assessed the effect of 1530 RNA-binding proteins on autophagy. Among the top regulators, we identified the eukaryotic translation initiation factor 4A-3 (eIF4A3). Here we show that depletion of eIF4A3 leads to a potent increase in autophagosome and lysosome biogenesis and an enhanced autophagic flux. This is mediated by the key autophagy transcription factor, TFEB, which becomes dephosphorylated and translocates from the cytoplasm to the nucleus where it elicits an integrated transcriptional response. We further identified an exon-skipping event in the transcript encoding for the direct TFEB kinase, GSK3B, which leads to a reduction in GSK3B expression and activity. Through analysis of TCGA data, we found a significant upregulation of eIF4A3 expression across several cancer types and confirmed the potential relevance of this newly identified signaling axis in human tumors. Hence, our data suggest a previously unrecognized role for eIF4A3 as a gatekeeper of autophagy through the control of TFEB activation, revealing a new mechanism for autophagy regulation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fatores de Transcrição/metabolismo , Autofagia , Humanos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...